Interactive Visualization of Complex Graphs

Marc Streit*

Institute of Computer Graphics and Vision
Graz University of Technology
Graz / Austria

Abstract

We aim at a visualization framework that empowers the
user to reveal information that is not obvious just by look-
ing at the graph. The keys to reach that goal are interactive
graphs in combination with well established visualization
methods. Techniques such as multiple views, linking &
brushing, and focus + context are already implemented in
the system. Furthermore the application is designed for
fast and modular integration of alternative and/or new vi-
sualization concepts.

Keywords: graph, information visualization, interactive,
application, Java, JOGL, OpenGL, linking, brushing

1 Introduction

The visualization of complex graphs is not trivial but
the graph drawing research area is already well explored
[9, 12, 13]. However when it comes to display connec-
tions among several mutual dependent graphs it gets even
more challenging. For theses purposes we implemented
a framework that tries to handle these issues. The results
are shown on the basis of test graphs from three different
fields of application. In this paper we rather focus on visu-
alization and interaction of graphs than on the process of
creation, layouting and editing those.

2 Methods

Each application domain requires a set of well established
visualization methods to be successful. The planning of a
visualization system highly depends on the used data. In
most cases it is hard to determine which combination of
visualization methods suits best for a particular data do-
main. In the upcoming section we will first describe the
data on which our system is based and the applied visual-
ization techniques.

2.1 Underlying data

We focus on partially cyclic directed graphs. Graphs con-
sist of several basic node types. Graphs can contain other

*mstreit@icg.tugraz.at

graphs and users may wants to switch between them. Mul-
tiple occurrence of nodes in the same graph as well as in
foreign graphs are possible. Nodes and edges can have
factors of influence and are therefore parameterized. We
have to handle directed as well as undirected edges. In ad-
dition data can be hierarchically organized which extends
the complexity by data abstraction.

Graphs are often layouted by experts from that partic-
ular domain because a lot of meta-knowledge might be
needed to position nodes and route edges. The alignment
and positioning of captions is problematic as well. In the
last decades a lot of effort has been put in automated graph
layouting algorithms [3, 4, 5, 15]. However in some cases
it still gives better results to carry out the layouting by
hand.

Our framework is capable of all kind of data that fits this
data definition. Fields of application are manifold. We
have chosen sample datasets from different domains that
imply miscelaneous properies.

data
.

‘ DataSet ‘ p S
:j— T createComponent) : Component |- - o ey,
Field + getPredicate() ; Predicate :
field H

X :
I Predicate | | ModelListener I--{ Model J :

[—— [Componart J

| Mode! |-"**'_s[Dynamic Query Binding }—m;’:é—ﬂ Factory Method |

‘

wser input dynamically createc craated. decorales
conirols updates with mim parsn‘! table

navigable —
viows - 'ﬂ Column |— 27" -| Cascaded Table
Interpreter ;miz-t
e

implement implement
accoss using using

. using
instance of
k Relational Graph
Expression access using
aperates on_y
draw ftems add operations Proxy Tuple |—instance of—#

filier operations 1‘
RN

assign vatues

s s, [St
w7 i S|

delegation
reuse
randarers

facillate implement
axtension activities

Template Method

utilizes

[Fyweight | [chain of Responsibitity |

Figure 1: Sample graph comprises dependencies of a set
of abstracted software design patterns used for information
visualization [1]).

Software design graphs (Type A)

The sample dataset is a network of interacting software de-
sign patterns used in the field of information visualization
[1]. Figure 1 shows a modified version of the abstracted
graph from [1] figure 14 that contains the overall relation-
ships. In addition each design pattern can be examined in
more detail by looking at the subgraph. The interaction of
the design patterns are visualized by directed relations. El-
ements of detailed design pattern graphs are contained in
other design pattern subgraphs as well. Therefore the data
are hierarchically directed graphs with inter-relationships.

Biomedical networks (Type B)

The biomedical graph consists of three node types that
are connected by directed and undirected edges. Figure
2 shows a portion of a sample graph from the biomedial
domain.

[zl —mo—————— LINK TO 1.4.2

% 44121
O 3229 O
[3225]
0
)
35131 2516 O—{4L150—»0C

[&
r
S EAETI L

Leoie]

St ST oo

Figure 2: Sample of a biomedical graph. Circular
nodes are alternating connected with rectangular nodes.
Rounded rectangles denote links to related graphs. Edges
are directed as well as undirected.

2.2 Visualization methods

Multiple views widen the space for displaying data and
keep a great potential to provide different aspects of the
same data at a time [2, 8]. In the upcoming sections var-
ious information visualization methods are discussed and
the usage in conjunction with our particular data is consid-
ered as well.

2-Dvs. 3-D

The presentation of data in 2-D and 3-D in parallel can in-
crease the user’s ability to percept the given information.
It is important to benefit from the advantages of one visu-
alization technique and compensate the weak points with
other methods. This approach can lead to a powerful vi-
sualization tool. For example 2-D views lack of space for

displaying huge networks but are perfectly suited for pre-
senting plain graphs and editing them. When it comes to
show relations to other graphs 2-D views reach their lim-
its. A very simple use case that underlines this fact is the
visualization of identical nodes or somehow related nodes
in other graphs inside the network. For this purpose in a 3-
D view several graphs can be arbitrary positioned in space
where it is much easier to visualize these relations. On
the other hand 3-D views imply problems such as depth
perception and occlusion. Occlusion and depth perception
are inherent problems of three dimensional representations
[8, 10]. There are ways to diminish these problems. For
example the usage of blending can counteract the occlu-
sion problem.

Linking and Brushing

The need of interactive connection of multiple views lends
itself to the employment of the linking and brushing tech-
nique (L&B). Brushing is a method where a subset of the
data can be interactively selected using so called brushes.
Linking is the procedure of highlighting the selected data
portion in related views by for example changing the color
and/or the shape [8, 10]. Assuming that view A and view
B are displaying the same data but using a different way of
representation all changes in view A need to be published
to view B immediately and vice versa.

Focus + Context

The Focus + Context approach aims on providing detailed
information and an overview over the data simultaneously
[10]. Kosara and Hauser classify the F+C techniques in
four subgroups [10]:

e Distortion-oriented
e Overview method

e Filtering

o In-Place Techniques

In this paper we want to depict the overview and the fil-
tering technique. The overview method provides contex-
tual information in a separate view. The filtering technique
shows the information using the same space but in a dif-
ferent representation or by filtering portions of the data.

Detail on demand

Meta-data about the graph and its elements is essentially
needed by the user to explore and reveal information. De-
tail on demand is a method that provides information by
user request. There are various strategies for providing
contextual information which depends on the amount. For
instance in a graph some kind of identification number
is used for the caption of a vertex. However triggering
a mouse-event signals the user’s interest in the full name
of the node. In this case a plain pop-up tool-tip window

might be appropriate. In contrast if the context informa-
tion is more comprehensive a sort of data explorer in a
separate view might be a better solution.

Neighborhood visualization

Visualizing neighborhoods in graphs means that after se-
lection of a node all adjacent nodes need to be highlighted.
Neighborhood algorithms are possible in arbitrary depth
and can either consider edge directions or not. After pick-
ing a node by triggering a mouse-event the neighborhood
algorithm returns a subset of nodes which can then be
highlighted according to the distance of the root node (e.g.
by changing their color). In an environment with multiple
views it is important that the result is synchronized with
all views that operate on the same graph data.

XML
bootstrapping
file

-
-

XML
input data

Figure 3: Overall module design

3 Framework implementation

The prototype application is written in Java. It is divided in
several seperated sub-modules. Figure 3 shows the fram-
work design. The core application triggers the bootstrap-
ping. The XML bootrstrapping file contains information
about how the Graphical User Inface should be built up,
which data should be initially loaded during start-up and
how the views are supposed to be connected together. Af-
ter the start-up process is finished the core module passes
on the control to the user. At that point the user is in the
center of an interaction loop with the visualization module.
On user’s request new data can be reloaded to the system
during run-time.

3.1 Detailed system architecture

The design of the framework follows the Model-View-
Controller (MVC) design pattern [1, 6, 11]. According to
the MVC metaphor the model that is the data is separated

—

~ Y

— —~ Visual

Data representation

Figure 4: Model abstraction into data and visual represen-
tations

from the views. This strict distinction between model and
view allows several views to access same data at a time.
When in a view data get changed the dataset can be up-
dated and other views that operate on the same data can
perform a refresh without knowing each other. The data
in the model part can be further split up into actual data
and visual models of the data [1, 16]. The visual model
can be seen as a special data representation that extends
the data by visual attributes. In case of graph nodes the
data itself may consist of an identification number, a label
and its relations to other nodes while the visual data rep-
resentation typically contains attributes like color, shape
and layouting information. Hence the usual situation that
2-D graph views need another data representation than an
3-D OpenGL view. In figure 4 this data abstraction is ap-
plied to graph data structures.

3.2 Graphical User Interface (GUI)

The Graphical User Interface (GUI) is implemented us-
ing the Standard Widget Toolkit (SWT)! from the Eclipse
Foundation [7]. We used the open source library JGraph?
for building plain graphs in 2-D. JGraph is a well designed
library that fits best our needs regarding graph draw-
ing. For the 2.5-D visualization we used Java OpenGL
(JOGL)? ([17, 19]) which can be embedded in SWT con-
tainer widgets without problems. The GUI itself can be
fully customized via a XML configuration file. By using
XML documents it is possible to combine 2-D and 3-D
views in an arbitrary layout inside the framework.

3.3 Data handling

One of our test datasets (Type B) consists of about 400
graphs including meta-data about the graphs. Due to this
fact special considerations regarding the data handling are
essential.

Thttp://www.eclipse.org/swt
Zhttp://www.jgraph.com
3http://jogl.dev.java.net

External

Database .
files

Fetch new
data

Data Gached
Proxy,/ files

Application

Figure 5: Data block diagram showing the data loading
process

Availability vs. performance

Graph data are read from external data files or an online
database. The latter is updated on a daily basis by the com-
munity and therefore contains up-to-date information. The
needed time period to either fetch a whole data snapshot
or else to update the local data is not suitable for a real-
time environment at all. As a result we had to take care
of this fact by integrating a data proxy. Figure 5 shows
a data block diagram including the proxy. The data are
then stored in an internal file format which can then be
used on application startup for pre-fetching the data into
the applications memory. When it comes to visualization
keeping the whole dataset on short-call in local memory is
mandatory because the field of application demands real-
time behavior.

ERNE2) EEE

MK TO 2115 |21.1.10
248 21.1.13)|12.1.1.14

Figure 6: Problematic cut-out of a Type B graph that
shows which problems an automated layouting algorithm
would have to face.

3.4 Rendering using hierarchial display lists

We packed the rendering of the graphs in display lists in
order to increase the performance. Using display lists it
is possible to store OpenGL commands for later execu-
tion [14, 18]. Specially in the domain of graphs display

lists are worth to use because the geometry in graphs is
very limited and it must be reused very often. The graphs
can be statically built during initialization phase before the
rendering loop gets executed. It turned out that our data
is perfectly applicable for hierarchical display lists. With
hierarchical display lists a cascade of display list can be
realized. This concept enables us to build the static graphs
completely during the initialization. The drawback of dis-
play lists is that they cannot be modified after creation.
This facts needs to be considered in applications’ design
especially when it comes to user interaction and brushing
(i.e. modifying geometry) of graph portions.

25148

25448 -

4
conton

25 \ \
oo Dttt) 0
a2aaf aais asids 251as
| consy
>
¥ ‘\441.21
ntssg—

a2 ———p-Ee3530
4

21137

= G005 137 11— G070

3223 32216

53212 ~— s 119

o276 oBosy 24228
/.
274
2615 [26157 1432 113, g
6L coa1ss
V2

Figure 7: Type B sample graph without any layouting
modification.

T SR !
251 |
a5 -

421273418 251482549
L — iL 121
[a———— EERRY
18.4.1 f
2115]2 110
322
PRRERE EEY
Lea1]
sai—»o 21137
Loan)
@ 5. 1,31} 25.16} ©—LL50} 5.1, 16 L2

° GI) 2.4.2.24]
y

{
|

1131

Figure 8: Type B sample graph with background texture
overlay.

4 Visualization module

4.1 Texture overlay technique

To overcome the problem of placing and routing the
graphs we applied several approaches. For positioning the
nodes we utilized a XML file that contains all information

needed to draw nodes and connect them by edges. Also
viewing information like screen coordinates of nodes from
the handmade layouted graph can be parsed. Therefore we
are able to build the graphs exactly as the user community
inside our test domain are used to them. This solves the
issue of node positioning but not the routing of the edges
and positioning of the labels in 2-D.

Figure 6 shows a portion of a graph that contains prob-
lematic situations where routing is not trivial. To solve the
layouting problem we took the static images of the gener-
ated graphs and put them in the background of the graph
in our system. This approach enables us to present the
graphs in the way the users are used to while extending
the static graphs with the power of all visualization and
interaction possibilities in 2-D and 3-D. In 2-D we work
with the images while in OpenGL the images are loaded
as textures. Figure 7 shows the sample graph without any
modification after parsing from XML file and drawn by us-
ing the JGraph library. Whereas in figure 8 the same graph
with a background overlay is shown. In this case the vi-
sualization of the system internal edges is turned off. As
a consequence the user just sees the edge lines that come
from the well-known background image.

parameter

a) e ——p | —— - >
in put f‘ ﬁo;tput
incoming outcoming
meta-information meta-information
b) e e

source target

Figure 9: a) shows the original graph portion while fig-
ure b) shows the same data after application of the F+C
filtering

4.2 Deployment of F+C techniques

The filtering method is realized by removing a class of
nodes. One of the two basic node types is just a inter-
mediate state. This circumstance is illustrated in figure 9.
Think of a chemical reaction where each reaction needs a
substrate and a product. The user could only be interested
in the products and/or substrates and not in the chemical
reaction itself. This would be a perfect case for filtering
the reaction nodes. Another example are data flow dia-
grams. The actions might be removed and only the data

- E
o |
}—»g$2.4.2.14 —6.3.413—w0—2122|—m0—[6353|»0—63
— 6347

ﬁl—@:ﬂl—*@— 6326} =
v3.6.1.20}—\ 2.4.2.7

354100—-—m-r——"f7"1"H"—"—"—"—"—""—""—————
»3.6.1.20|~

3618—o i

3.6.1.19}

bbb |
3.6.1.6| 4_2746|___T'v_
36.015] “_3615|_
1.7.1.7|

3.6.1.8
o 361200

6.3.4
I—BQ4¢3546H iiiz—wo——

Figure 10: Portion of a sample graph that can be interac-
tively selected in the overview map.

entities should be visible.

As a second F+C technique we implemented the
overview method. A separate view (in our case a new win-
dow) contains a overview map in which an area can be de-
picted that is supposed to be visible in the graph displaying
view. An example is shown in figure 10.

4.3 Neighborhood visualization

The system is designed to perform k-depth neighborhood
visualization. Neighborhoods up to a distance of 3 seems
to be the limit within the algorithm makes sense because
of the cyclic characteristic of the graphs. Figure 11 shows
a portion of the sample graph on which a 3-times neigh-
borhood algorithm is performed. The used color coding
indicates the selected node in red and adjacent nodes from
a dark orange to yellow. In the prototype implementation
we used a Breadth-first-search (BFS) algorithm. Interest-
ing effects are caused by the cycles inside the graph. It
is possible that nodes are visited several times by the al-
gorithm. To consider these cycles we have to remember
already visited nodes during running the BFS.

vser. " " oreates,
todel mw+\ Dynamic Query Binding |- Wgﬂsa-l Factory Method | [Decorator |
~
user input dynamically ereated craated decorales
conlrols updates with with parent table
-'—— data sorage <+ i Cascaded Table |
_ create implement implement
w premd g using
instance of ki
) Relational Graph
Expression acress using
operates on__y,
add operations instance o=
filtar operations f
,DFDCIiSSBS

Figure 11: Depth 2 neighborhood visualization in a Type
A graph

/\2/\{ e - ?
w N [LT
22K 12w A1

Figure 12: 2.5-D OpenGL layered Type B graph with a
user selection

4.4 Layered graph view

We annotate several dependent graphs on different levels
in 3-D space. This gives the user the ability to identify
identical nodes in foreign graphs. The highlighted nodes
change their color and are additionally accentuated by a
pulsing effect. Figure 12 contains a screenshot of 3 graphs
in a layered view. The graph layers are see-through. High-
lighted nodes are connected by a linking line. A more so-
phisticated relation visualization is eligible.

The perception of the layers can be supported by adding
textures of the handmade graph on demand. A screenshot
of the layered view including the texture overlay is pro-
vided in figure 13. By implementing the textures as semi-
transparent layers the occlusion effect is alleviated.

5 Conclusion and Future Work

In this paper we propose a framework that enables users to
reveal dependencies and connections in complex graphs
that are hidden under the surface. However the assembly
of the network in small more or less separated graphs is
only a makeshift because of the lack of a good visualiza-
tion method. Better results could be achieved by imple-
menting a real 3-D solution where node are positioned in
space. The user would need time to get used to the new
layout and different way of navigation. But the prepara-
tion of the data in 3-D space is more likely to the nature of
graphs than the artificial split-up in subgraphs.

6 Acknowledgements

The author wants to express his gratitude to Michael
Kalkusch for his supervision and many fruitful discus-
sions. Futhermore many thanks to Dieter Schmalstieg for
giving me the opportunity to perform research on this in-
teresting topic.

This research was sponsored in part by Zukunftsfond
Steiermark.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

(11]

Maneesh Agrawala. Software design patterns for in-
formation visualization. IEEE Transactions on Vi-
sualization and Computer Graphics, 12(5):853-860,
2006. Student Member-Jeffrey Heer.

Michelle Q. Wang Baldonado, Allison Woodruff,
and Allan Kuchinsky. Guidelines for using multi-
ple views in information visualization. In AVI ’00:
Proceedings of the working conference on Advanced
visual interfaces, pages 110-119, New York, NY,
USA, 2000. ACM Press.

Giuseppe Di Battista, Ashim Garg, and Giuseppe Li-
otta. An experimental comparison of three graph
drawing algorithms (extended abstract). In SCG ’95:
Proceedings of the eleventh annual symposium on
Computational geometry, pages 306-315, New York,
NY, USA, 1995. ACM Press.

Giuseppe Di Battista, Ashim Garg, Giuseppe Li-
otta, Roberto Tamassia, Emanuele Tassinari, and
Francesco Vargiu. An experimental comparison of
four graph drawing algorithms. Comput. Geom. The-
ory Appl., 7(5-6):303-325, 1997.

Josep Diaz, Jordi Petit, and Maria Serna. A sur-
vey of graph layout problems. ACM Comput. Surv.,
34(3):313-356, 2002.

Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1995.

Bobby Harris, Rob Warner, and Robert Harris. The
Definitive Guide to Swt and Jface. APress, 2004.

Helwig Hauser and Robert Kosara. Interactive anal-
ysis of high-dimensional data using visualization. In
Workshop on Robustness for High-dimensional Data
(RobHD 2004), Vorau, Austria, May 2004.

Patrick Healy and Nikola S. Nikolov, editors. Graph
Drawing, 13th International Symposium, GD 2005,
Limerick, Ireland, September 12-14, 2005, Revised
Papers, volume 3843 of Lecture Notes in Computer
Science. Springer, 2006.

Robert Kosara, Helwig Hauser, and Donna L. Gresh.
An interaction view on information visualization.
In State-of-the-Art Proceedings of EUROGRAPHICS
2003 (EG 2003), pages 123-137, 2003.

Glenn E. Krasner and Stephen T. Pope. A cook-
book for using the model-view controller user inter-
face paradigm in smalltalk-80. J. Object Oriented
Program., 1(3):26-49, 1988.

Figure 13: 2.5-D OpenGL layered Type B graph with a blended texture overlay. The node in the middle layer is picked by
a mouse-click event. Identical nodes in dependent graphs are interactively highlighted and connected to the selected one.

[12] Giuseppe Liotta, editor. Graph Drawing, 11th In-
ternational Symposium, GD 2003, Perugia, Italy,
September 21-24, 2003, Revised Papers, vol-
ume 2912 of Lecture Notes in Computer Science.
Springer, 2004.

[16] Diane Tang, Chris Stolte, and Robert Bosch. Design
choices when architecting visualizations. Informa-
tion Visualization, 3(2):65-79, 2004.

[17] David Wolff. Using opengl in java with jogl. Journal
of Computing Sciences in Colleges, 21(1):223-224,

[13] Janos Pach, editor. Graph Drawing, 12th Interna- 2005

tional Symposium, GD 2004, New York, NY, USA, [18] Mason Woo, Davis, and Mary Beth Sheridan.

September 29 - October 2, 2004, Revised Selected
Papers, volume 3383 of Lecture Notes in Computer
Science. Springer, 2004.

[14] Dave Schreiner, Dave (Ed.) Schreiner, and Dave

Shreiner. OpenGL Reference Manual: The Offi-
cial Reference Document to OpenGL, Version 1.2.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[15] Roberto Tamassia, Giuseppe Di Battista, and Carlo

Batini. Automatic graph drawing and readability of
diagrams. IEEE Trans. Syst. Man Cybern., 18(1):61-
79, 1988.

OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Version 1.2. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[19] Zhigen Xu, Yusong Yan, and Jim X. Chen. Opengl

programming in java. Computing in Science and
Engg., 7(1):51-55, 2005.

