
Extending The Scene Graph With A
Dataflow Visualization System

Michael Kalkusch
kalkusch@icg.tu-graz.ac.at

Dieter Schmalstieg
schmalstieg@icg.tu-graz.ac.at

Institute for Computer Graphics and Vision
Graz University of Technology

Inffeldgasse 16, A-8010 Graz, Austria

ABSTRACT
Dataflow graphs are a very successful paradigm in scientific
visualization, while scene graphs are a leading approach in
interactive graphics and virtual reality. Both approaches
have their distinct advantages, and both build on a com-
mon set of basic techniques based on graph data structures.
However, despite these similarities, no unified implementa-
tion of the two paradigms exists. This paper presents an in-
depth analysis of the architectural components of dataflow
visualization and scene graphs, and derives a design that
integrates both these approaches.

The implementation of this design builds on a common
software infrastructure based on a scene graph, and extends
it with virtualized dataflow, which allows the use of the scene
graph structure and traversal mechanism for dynamically
building and evaluating dataflow.

Categories and Subject Descriptors
I.3.5 [Computational Geometry and Object Model-
ing]: Object hierarchies,scene graph, visualization, dataflow
visualization system; I.3.4 [Graphics Utilities]: Applica-
tion packages

Keywords
Object hierarchies, Scene graph, visualization, dataflow vi-
sualization system

General Terms
Algorithms, Theory

1. INTRODUCTION
Bethel observed in a SIGGRAPH 1999 panel [2] that

”Scene graph models and scientific visualization systems can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VRST’06 November 1–3, 2006, Limassol, Cyprus.
Copyright 2006 ACM 1-59593-321-2/06/0011 ...$5.00.

harmoniously coexist [...]. Taking a step back, we can refer-
ence the similarity between traditional dataflow visualization
systems and scene graph models.” In a nutshell, this paper
is an attempt to prove that this statement is indeed true.

Dataflow visualization systems are popular tools for im-
plementing scientific visualizations, because they provide an
intuitive approach to iterative development and data anal-
ysis. The user constructs a graph composed of nodes rep-
resenting visualization functions, connected by edges repre-
senting the flow of data from one node to the next. This
approach, related to the pipes–and–filters design pattern [4]
is often complemented by a beginner friendly visual pro-
gramming front–end: ”Programming by plumbing.” [8]

Scene graphs used for Virtual Reality (VR), such as Inven-
tor [14], OpenSG [10], OpenSceneGraph [3] or Performer [11]
are also based on a graph structure, but with a different ob-
jective. Nodes in a scene graph are graphical objects con-
tributing to the scene, such as geometry, texture, transfor-
mations or cameras. Arcs in a scene graph are used to hi-
erarchically arrange the scene graph, typically according to
geometric or semantic constraints.

Some general–purpose scene graph libraries have been ex-
tended to address the needs of scientific visualization. For
example, OpenSG [10] has integrated volume rendering, and
TGS Open Inventor has an extension for scientific visual-
ization, called DataVis [15]. However, these visualization
extensions encapsulate visualization data and visualization
algorithms tighly in a way that precludes general functional
composition of different visualizations such as possible in for
example VTK [12]. A typical design shortcoming of such
approaches is the combinatorical explosion of classes in [15]
resulting from the need to combine every type of input data
with every visualization method.

The CashFlow architecture presented in this paper en-
riches a VR scene graph with a dataflow architecture for
visualization. It has the following noteworthy features:

1. Natural integration of dataflow into the scene graph
Object–oriented graphics systems have a number of
common architectural features with dataflow systems,
such as the organization of nodes into separate data
objects and process objects (Strategy pattern [6]), node
reference counting, reflection or the use of scripting
languages for high level programming. CashFlow builds
dataflow visualizations on top of a scene graph soft-
ware architecture, reusing the common infrastructure
and thereby tightly integrating both paradigms.

252

2. Virtualization of dataflow
Rather than hardwiring the data flow in the scene
graph, CashFlow uses virtualized data and virtualized
flow. Virtualized data separates raw data, access pat-
terns and structure (geometry and topology) into sepa-
rate entities that are dynamically composed as needed,
eliminating expensive data copy operations. Virtual-
ized flow between nodes is established dynamically by
utilizing the scene graph traversal mechanism. The
advantage of virtualized flow over a conventional def-
inition of flow is the strong decoupling of the source
and destination of the flow, following an Event Chan-
nel pattern [4]. Virtualized flow allows easy decompo-
sition of complex visualization problems into smaller
sub–problems with localized influence on the dataflow
graph.

3. VR interaction with components of the dataflow
Scene graph architectures for VR typically allow a high
degree of interaction with the scene. CashFlow inher-
its the full interaction capabilities from the underlying
scene graph and allows to apply all existing powerful
VR interaction techniques to the new elements of the
dataflow visualization system, for enhanced control of
visualization and computational steering parameters.

2. BACKGROUND

2.1 Dataflow visualization
The process of scientific visualization is usually explained

as a visualization pipeline, composed of a sequence of stages
(see Figure 1). This concept is closely related to the render-
ing pipeline and was introduced by [7][17][12].

This pipeline consists of filtering of data (selection from
a larger or infinite pool), mapping of the data (transform-
ing the raw data into a format applicable for visualization),
and rendering of the data (generation of images) as seen in
figure 1. The output of the mapping stage generates geo-
metric primitives, which are ultimately composited and ren-
dered. To manage this complexity, visualization systems
use an object–oriented approach to embedding visualiza-
tion algorithms in components with well–defined input and
output ports [17][8][12]. Using a pipes–and–filters design
pattern [4], these components can be assembled into graph
structures.

2.2 Graph evaluation
Unlike the edges denoting dataflow in dataflow visual-

ization, edges in the scene graph denote parent-child rela-
tionships. In addition to the structural hierarchy made up
from these parent-child edges, many scene graph systems
like Open Inventor [14], Avango[16] or Maya introduce an
additional category of functional dependencies through an
Observer pattern [6] on nodes or part of nodes (fields). This
dependency graph exists independently of structural graph
of the scene, and represents a form of dataflow.

The runtime system’s main responsibility is the appropri-
ate scheduling of the evaluation of the graph. For efficiency,
most toolkits use either caching or lazy evaluation.

• Caching After an initial full evaluation, the results
are cached. Only nodes that have been modified or
depend on a modified node need to be reevaluated.

Figure 1: Traditional visualization pipeline.

• Lazy evaluation Only if the results are requested,
the evaluation is triggered. Thus the data flow graph
is executed in reverse order while requesting the data
from sink to source [12].

A node that has been modified is marked for reevaluation.
Dependent nodes are recursively notified and marked for
reevaluation. In case a system has both a structural graph
and a dependency graph, both structurally and functionally
dependent nodes need to be notified. This propagation of
notification can either happen immediately after the mod-
ification [14], or can be deferred to an explicit notification
phase [1][12][10]. If the notification reaches a final output,
typically a root or sink node connected to a rendering view,
reevaluation is scheduled.

Reevaluation, for example for rendering a new image, is
then simply done with a Visitor design pattern [6] travers-
ing all marked nodes starting from the sink (see figure 2).
While the actual traversal strategy may be specific to each
system (e.g., depth first and left–before–right [14], in–order,
breadth–first, priority queue), the mechanisms of all systems
are conceptually similar.

2.3 State propagation

Figure 2: Scene graph traversal with stack.

The dependency graph is a secondary structure in scene
graph systems. Each node may have several fields, which can
be connected to corresponding fields of another node. It al-
lows modelling of functional dependencies between objects
in the scene graph that are disconnected in the geometric
and semantic hierarchy. However, the direct connection of
dependent nodes, while convenient to model simple connec-
tions, can have disadvantages when naively used for dataflow
modeling involving computationally and memory intensive
operations:

• Problem of strong coupling
Field connections in scene graphs are direct connec-

253

tions. This may not always be desirable given that the
nodes involved come from different parts of a scene
graph, as it prevents a divide and conquer strategy
from being used to model the overall scene graph.
Otherwise independent sub–graphs constituting use-
ful local solutions to a specific design problem can no
longer be treated independently. Direct connections
also imply that the number of senders and/or receivers
is known exactly in advance, and changing connections
at runtime may be undesirable since it means a con-
stantly changing scene graph.

• Problem of copying
The evaluation of functional dependencies computes
and stores the result, for nodes further down the de-
pendency chain. The strict type system of fields re-
quires that many typical filter operations (selection
from and interpretation of raw data) are done explic-
itly as part of the evaluation, resulting in the copying
of potentially large quantities of data unless special
adaptor objects are used. Many systems [8][15] allow
multiple references to large data items, but this only
makes the data available in the original form, rather
than allowing at least some degree of filtering (such as
stripping parts of the data) on the fly.

CashFlow solves these problems by embedding a dataflow
graph inside a scene graph using Elements (see Figure 5).
Scene graph traversal presents an alternative to direct con-
nections via a dependency graph. During the traversal, gen-
eral information is accumulated in the state associated with
the traversal. The state contains a set of working variables
(elements), for example the current drawing color or trans-
formation matrix. Nodes modify the state as needed, and
read it to obtain configuration information needed to carry
out their own responsibilities. The state can be used to
communicate arbitrary information in an anonymous way
between nodes. Source and destination node communicate
indirectly and need not be aware of each other explicitly.

Elements of the state are pushed on a stack as the traver-
sal progresses deeper down the structural graph, and re-
stored when the traversal is backtracking. Hence, the stack
preserves intermediate state, and by default state manip-
ulations have local scope. The stack management is done
implicitly by the non–leaf nodes of the graph, conveniently
decoupling the effects of state modification happening in in-
dependent sub–graphs.

Using elements addresses the problem of strong coupling
of sender and receiver. The second problem − the copying of
data − can also be overcome by elements passing references
to data via the state rather than the data itself. These ideas
will become important in our software design, which uses the
elements as virtual edges in a virtualized dataflow graph.

3. SOFTWARE ARCHITECTURE
Our approach of embedding a dataflow visualization sys-

tem into a scene graph is based on Coin[13], a free reimple-
mentation of the popular Open Inventor API. One of the
overall design goals was to create a very slim, yet powerful
library, by maximizing the reuse of existing runtime infras-
tructure of the Coin framework.

First of all, nodes in the dataflow graph can be directly
mapped to nodes in the scene graph. This approach is triv-
ial, but immediately provides the following infrastructure

features which are essential for a dataflow visualization sys-
tem:

• Object–oriented class hierarchy enabling reflection

• Straightforward extensibility through subclassing

• Interpreted scripting language via Coin’s ”.iv” file
format (the precursor to the VRML standard)

• Parameterization of nodes by their data members
which are called ”fields”.

While nodes of the dataflow graph are implemented as
nodes in the scene graph, edges of the dataflow graph can
obviously not be implemented as edges of the structural
graph. Coin also offers a dependency graph, but using it
for dataflow incurs the drawbacks mentioned in section 2.3.
It was therefore decided to implement virtualized dataflow
on top of stateful traversal.

3.1 Virtualized dataflow
Virtualized dataflow removes the conventional tight cou-

pling of raw data to its topological, geometrical and vi-
sual interpretation. The data itself (DataNode), the in-
structions on filtering the relevant subset of the data to be
used (SelectionNode), the geometric/topological interpreta-
tion (mapping) of the data (GridNode), and finally the visu-
alization techniques (ConsumerNode) are all separate entities
that can be placed anywhere in the scene graph. Visualiza-
tion techniques can be divided into rendering (RenderNode)
and generating intermediate data (GeneratorNode).

Figure 3: Rendering pipeline in CashFlow. Corre-
sponding UML diagram is shown in figure 5.

In isolation, only the RenderNode has visible effects. Visu-
alizations are assembled dynamically during the scene graph
traversal by dynamically associating data, selection and grid
nodes with render nodes based on string keys stored in el-
ements. Since the keys are managed as elements, binding
of data, selection, grid, and rendering occurs at the latest
possible moment. Once a RenderNode (see section 4.4) or
a GeneratorNode (see section 4.5) are touched during scene
graph traversal, the references to the data, selection and grid
nodes are received by querying the appropriate elements (see
figure 5).

3.2 An example for virtualized dataflow
A dataset of the flow field surrounding the Space Shuttle

organized in a regular radial grid. The goal is to produce
a visualization showing the body of the space shuttle and
selected planar slices of the surrounding flow, both along the
main axis and perpendicular to the main axis. For the sake
of simplicity, color coded polylines connecting the sample
points are used in rendering.

The scene graph used to generate the image from fig-
ure 4a is shown in figure 4c, together with the correspond-
ing virtual dataflow in figure 4d, while figure 4b show the
same dataset in bird’s eye view. Four instances of dataflow

254

Figure 4: Space shuttle: axial shuttle grid (G1)
rendered in red and radial shuttle grid (G2) ren-
dered in blue are using the same SelectionNode (S1).
The green grid (G3) and the perpendicular white
grid (G4) use their own Selections (S2) and (S3).
The shuttle data (D) is reused in figure 4a-d. Figure
4e shows the same Scene Graph with field connec-
tions were data need to be copied to (S1)-(S3) and to
(G1)-(G4). Dashed line from (S1) to (R) indicates
an optimization for field connections.

(shown as sequences of green arrows in figure 4d) from the
single data node D to the single rendering node R of the
scene graph along various combinations of selection and grid
nodes work together to produce the result. The dataflow is
established dynamically as a result of the traversal, and is
not evident when the scene graph is inspected as a static
entity in figure 4c. In particular, note that not only D
and R are used multiple times, but also selection S1 is used
for both the white and green slices. Figure 4e) shows the
same scene graph using field connections. The SelectionNode

would create a copy of the data representing the current se-
lection. One optimization to avoid copying of data from the
SelectionNode to the grid node would be a direct linking of
selection and rendering node as indicated between S1 and R.

The visualization is established by combining the four
parts in the final framebuffer through conventional OpenGL
rendering. No data from D is copied explicitly in the gen-
eration of the visualization, however real–time performance
of the scene graph rendering is ensured through display list
caching of the rendered data, which is managed implicitly
by the Coin runtime system.

3.3 Elements as virtual edges
In essence, a virtual dataflow is established by using el-

ements as virtual edges. Since elements are organized in
stacks and affected by the traversal order, the currently ac-
tive list of virtual edges changes during traversal, allowing
extremely flexible composition of the dataflow graph embed-
ded inside the scene graph.

When a DataNode is traversed, the pair <pointer to Data-
Node, key of DataNode> is placed in the data element. An-
other data node, which uses the same key but is traversed
later, can overwrite the entry in the element with a pointer
to itself. Similarly, the SelectionNode places a key/pointer
pair in the selection element, and the GridNode places a
key/pointer pair in the grid element. Multiple assignments
to the same key in a particular element’s set of key/pointer
pairs will override the previous assignment, but backtrack-
ing will restore the previous state when progressing to an-
other part of the scene graph. It is also possible to query
the elements for the last n–nodes added to the elements.
This is very useful once ConsumerNodes require multiple
data sources. Changing this order inside the element is also
possible.

Figure 5: Class diagram showing the main compo-
nents (nodes & elements) participating in the virtu-
alized dataflow. Dashed lines show access to data.

At evaluation, the virtual edges established through ele-
ments are traversed backwards: The ConsumerNode uses its
specific keys to query the elements for the intended GridNode.
The GridNode refers back to the SelectionNode, and the
SelectionNode refers back to the DataNode (see figure 5).
Depending on the current state, i.e., the content of the ele-
ments, the same ConsumerNode will yield different output,
because its input is different. The virtual dataflow is dynam-
ically composed as an outcome of the scene graph traversal.
By modifying the scene graph traversal order, for example
by rearranging the scene graph or using switch nodes for
selective traversal, the virtual dataflow can be interactively
altered.

255

The intended consequence of this design is that DataNode,
SelectionNode and GridNode can be arbitrarily combined to
produce visualizations. Specifically, a pool of data com-
posed of one or more DataNodes can be interpreted in dif-
ferent ways through multiple combinations of SelectionN-
odes, GridNodes and ConsumerNodes in the same traver-
sal. SelectionNode and GridNode together provide the Con-
sumerNodes with appropriate iterators to access the data
stored in the DataNode.

4. IMPLEMENTATION OF CASHFLOW
CashFlow extends Coin and is implemented as a set of

nodes, actions and elements. Figure 5 shows the fundamen-
tal nodes and elements used.

4.1 DataNode
Objective: Store raw data under a given key.
The DataNode’s purpose is simply to assign a dataKey

(stored in the data element) to a block of raw data. This
defines the first stage of the visualization pipeline. The user
can specify the actual data either directly inline in the .iv
file defining the data node, or by using a separate loader
node capable of reading specific third–party formats from a
file. Data is stored in the form of arrays (multi–valued field
types, starting with SoMF. . .) of any of Coin’s basic data
types. Rather than implementing individual subclasses for
each primitive data type, the DataNode offers all primitive
types simultaneously. This allows the use of multiple fields,
which is an arrays of fields, for heterogeneous data sources.
It often removes the need to use two data nodes, because
different types of data can be stored inside one DataNode.
The SelectionNode, that will be introduced in the next sec-
tion, will also allow storing several blocks of data inside one
multiple field of a DataNode.

4.2 SelectionNode
Objective: Define access pattern(s) to raw data.
The purpose of the SelectionNode is to define an access

pattern to the raw data. Consequently, the only interface of
the SelectionNode relevant to the client is an access function
that maps an index to a data value. This is a form of fil-
tering in the sense of [17]1, but the SelectionNode performs
this filtering on the fly rather than it being precomputed,
and is therefore limited to shuffling and skipping data. The
SelectionNode is motivated by the observation that many fil-
tering operations do not actually synthesize new data (this is
reserved for the GeneratorNode explained in section 4.5), but
only require the data in a different order and composition
from its native form due to strict typing requirements.

Copying such data more than strictly necessary just to
provide type compatibility with RenderNodes is wasteful.
Copying the data for optimal rendering efficiency is useful,
but this is internally handled by the Coin graphics runtime
system which automatically builds display lists to accelerate
the performance of RenderNodes.

• In the simplest single–block mode the SelectionNode
returns a section of the data. The data is taken from
the DataNode designated by dataKey. The value of
dataKey is compared to all keys in the data element,
and the matching DataNode is used as the source of

1AVS Express http://www.avs.com

Figure 6: Virtual arrays: Single, multiple and ran-
dom block virtual arrays.

the data. The type field determines the type of data.
The returned data array starts at the given offset and
has the given length. The result is made available to
the next stage in the visualization pipeline by placing a
selectionKey associated with the SelectionNode in the
selection element (see figure 5).

• The multi–block mode allows certain data values to
be skipped. Again, the relevant data is identified by
dataKey and type. The returned data starts at offset
and divides the array of given length into blocks of
increment data items. The first repeat data items of
every block are returned (see figure 6).

• The random–block mode is intended to implement ran-
dom access to the DataNode identified by dataKey and
type. The returned data is retrieved according to the
index specified in a lookup table.

All basic configuration fields in the SelectionNode are ar-
rays and can store multiple values. This mechanism allows
multiple independent selections of the data to be configured
in a single SelectionNode. Every selection corresponds to a
specific index into the arrays selectionKey, dataKey, offset,
length. Two restrictions apply: obviously, all the mentioned
configuration fields in one SelectionNode must have the same
number of items; furthermore storing multiple selections is
only possible in single–block and multi–block mode.

4.3 GridNode
Objective: Define topological and geometrical interpreta-

tions of raw data.
The GridNode’s purpose is to add topological and geo-

metrical interpretation to raw data. For example, a set of
raw geometric coordinates can be interpreted as a 2D or 3D
mesh, or a set of measurements can be interpreted as den-
sity values at the vertices of a tetrahedral mesh. The data

256

Figure 7: BaseGrid class hierarchy of CashFlow.

is read via a SelectionNode indicated by the selection ele-
ment corresponding to selectionKey, and is made available
by writing the gridKey to the grid element.

The main interface of the GridNode is the grid iterator.
It allows a RenderNode to systematically iterate through all
items of a chosen geometric entity (either point, edge, face
or cell) defined by the grid. The grid iterators relieves the
RenderNode from the need to know the actual topological or
geometrical structure as long as drawing requires informa-
tion about only a local geometric entity. Consequently, the
same RenderNode can work with a large variety of grids.

CashFlow supports a large variety of grids organized as
a class hierarchy loosely inspired by the Field Model li-
brary [5] [9]. The abstract base class defining the iterators
interface is called BaseGrid. The main characteristics of the
grids used for organizing the class hierarchy are:

• Structure: structured grids fit into one array and in-
formation on adjacency of topological entities is im-
plicit. In contrast, unstructured grid are usually not
repetitive, and require explicit adjacency information
for topological entities.

• Dimension: grids can define line sets (1D), surface
meshes (2D) or volumetric meshes (3D).

• Regularity: a structured grid can be subdivided in a
regular way into evenly sized entities by just specifying
the number of subdivisions applied to each dimension.
Alternatively, a grid can be subdivided in an irregular
way into non–evenly sized entities by using an explic-
itly given data set of sizes to be used.

• Shape: there are a number of basic shapes available
for each structure, dimension and regularity. These
shapes include perpendicular shapes (rectangle, cuboid),
radial shapes (disc, cylinder, sphere) and various irreg-
ular primitives such as triangle or tetrahedron.

4.4 RenderNode
Objective: Create OpenGL based drawings.
The class hierarchy of render nodes implement rendering

algorithms. A RenderNode requests data from a GridNode
by accessing the grid element given by the gridKey. There
are a large number of possible RenderNodes depending on
the application domain, and only a basic set, mostly from
the domain of flow visualization, have been implemented to
showcase the capabilities of CashFlow. Examples for Ren-
derNodes are shown in figures 4,8–13.

• Point Cloud Renderer: The most basic Render node
draws a color–coded point at each vertex position.
This visualization can be useful for example to inves-
tigate the density of a grid.

• Glyph Renderer : This is the complement of the point
renderer in vector fields. At each selected point a glyph
shows the direction of the flow. Glyphs can be also
used to visualize multidimensional data.

• Cell Renderer: The grid is divided into cells and each
cell is rendered.

• Wireframe Renderer: The grid or parts of the grid are
visualized using a wire–frame.

• Surface Renderer: This renderer is similar to the wire-
frame renderer. The grid is rendered using surfaces.

• Streamline Renderer: Rendering of streamlines in dif-
ferent ways. In extension to the default streamline ren-
derer an up–vector per each interpolation point can be
taken into account to visualize vorticity.

• Polygonal Renderer: renders polygonal data.

4.5 GeneratorNode
Objective: Synthesize output data from input data.

The CashFlow approach up to now can be described as a
fixed function visualization pipeline. While its components
have a high amount of flexibility, the basic stages of the
pipeline are fixed as show in figure 3. None of these stages
truly synthesizes new data from data already existing in the
scene graph. For example, a marching cubes algorithm cre-
ates a polygonal iso–surface from a set of voxels. To address
the need for such data synthesis, we introduce an additional
node, the GeneratorNode. Like the RenderNode, it is derived
from ConsumerNode, because it consumes information from
a DataNode. The mapper node differs from the previously
introduced nodes in one important aspect: it actively mod-
ifies another node, namely the destination DataNode.

257

Figure 8: Parametric mapping of scalar values. Lin-
ear input data [raw] shown as height–field with
color–coding. Input data is altered in a Generator-
Node using cubic splines (d)-(f) and a second
GeneratorNode creates the corresponding color–
coding. The scene graph shows a DataNode (D),
SelectionNode (S) and a GridNode (G) storing raw
data, which is rendered (R) using a colormap cre-
ated by a GeneratorNode (GE) and shifted by a
TransformerNode (T). Inside the dashed box data
is altered (GE), buffered (D) and a colormap (GE)
is created and rendered (R).

One caveat with using GeneratorNodes is that they can
be computationally intensive. In such a case the execution
of the computation during the traversal is not appropriate,
since the traversal may stall. The usual solution for this
kind of problem is decoupling the computation in a sepa-
rate thread and deferring the update of the rendering data
until the result of the computation becomes available. In
Coin, the spawning of a separate thread can easily be en-
capsulated in the GeneratorNode itself, while the Coin run-
time system automatically takes care of caching the render
data in OpenGL display lists. One limitation of the current
implementation is that there is no automatic scheduling of
such computation threads, but the developer of each type
of GeneratorNode needs to schedule a separate computation
thread explicitly in the implementation of the Generator-
Node.

Figure 9: Left part of space shuttle grid rendered in
axial direction, right part of grid rendered in radial
direction. Two red radial layers in red show uneven
distibution of the grid. All 3 rendering styles access
the same data in memory. The cyan radial grid may
be disabled via the SwitchNode or shifted by the
SliderNode.

5. RESULTS
Figure 8 shows a combination of two GeneratorNodes,

a CubicDataGeneratorNode (labeled GE value) and a Color-
GeneratorNode (labeled GE color). The CubicDataGenerator-
Node interpolates the raw data using cubic splines and stores
the intermediate data in a DataNode, which is used to cre-
ate a color map based on that intermediate data. Since a
GeneratorNode should not insert new nodes inside the scene
graph, because it would limit the scripting capabilities, a
DataNode for intermediate data is placed in the scene graph
as shown in figure 8 inside the dashed box. Using 3 different
cubic functions creates the height fields in figure 8 (d) –(f).

In figure 9 two widgets alter the scene graph and its
dataflow graph interactively. An on/off node, which is cou-
pled to a switch, allows the red slicing plane to be alternately
shown and hidden. The position of the slicing plane can be
modified by a slider node. Both on/off and slider node use
the standard dependency graph to update the switch and
selection node, respectively. More examples are shown in
figure 10–13 including shaded and textured surfaces (fig-
ure 11), rendering three objects as point–clouds and gener-

258

ating a colormap mapped to pressure (see figure 12). The
third example in figure 10 shows an iso–surface created from
a CT dataset rendered as an indexed–faceset.

6. CONCLUSIONS AND FUTURE WORK
We have presented CashFlow, an architecture that inte-

grates concepts from scene graphs and dataflow visualiza-
tion systems. CashFlow is based on the scene graph li-
brary Coin, and systematically extends it towards dataflow
visualization. Its design allows the advantages of both ap-
proaches to be simultaneously exploited. All attributes used
to parametrize the data flow and the visualization pipeline
are part of the scene graph as nodes and fields. Thus these
attributes can now be manipulated interactive inside the
scene graph, influencing the data flow graph.

A key achievement is the virtualization of dataflow which
is enabled by introducing elements which are dynamically
managed by the scene graph traversal as virtual edges, and
by decomposing visualization objects into separate objects
for data, topology, filtering and mapping. CashFlow is in-
tegrated into the Studierstube framework and can be used
with an ART tracking system in combination with a back–
projection screen (see figure 13). Several visualization pa-
rameters as well as selection properties can be mapped to
tracked objects allowing interactive exploration of the datasets.

Besides the obvious extension of the feature set, such as
new rendering classes, future work will focus on enhanced
scheduling of the flow, in particular multi–threaded and par-
allel scheduling of the traversal that is the foundation of
CashFlow. In addition, a visual programming front end is
on the list of desired extensions. Such a visual programming
tool could extend CoinDesigner2, a prototype scene graph
editing tool for Coin.

Acknowledgments. This research was sponsored in part
by the Austrian Science Fund FWF under contract no. Y193.
Many thanks to Gerhard Reitmayr for useful discussions.
The space shuttle dataset is courtesy of NASA NAS Sys-
tems Division Office.

Figure 10: Iso–surface created from a CT dataset
by Marching Cubes (left) with its scene graph and
data flow graph (right).

2http://coindesigner.sourceforge.net

7. REFERENCES
[1] G. Abram and L. Treinish. An extended data-flow

architecture for data analysis and visualization. In
proc. IEEE Visualization ’95, pages 263–270, 1995.

[2] W. e. Bethel. Scene graph APIs: Wired or tired? In
proc. ACM SigGraph’99 Conference abstracts and
applications, pages 136–138, 1999.

[3] D. Burns and R. Osfield. Open scene graph, 2002.
http://www.openscenegraph.org/
visited at 01.02.2006.

[4] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture, Vol.1. Wiley, 1996.

[5] J. M. Favre and J. Hahn. An object oriented design
for the visualization of multi–variable data objects. In
proc. IEEE Visualization’94, pages 318–325, 1994.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[7] D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph, and
K. Doyle. Fabrik: a visual programming environment.
In proc. ACM OOPSLA ’88, pages 176–190, 1988.

[8] B. Lucas, G. Abram, D. E. N. Collins, D. Gresh, and
K. McAuliffe. An architecture for a scientific
visualization system. In proc. IEEE Visualization ’92.,
pages 107–114, 1992.

[9] P. Moran. Field model: An object–oriented data
model for fields. Technical report, NASA, 2001.
open source C++ Template library.

[10] D. Reiners. A flexible and extensible traversal
framework for scenegraph systems. In proc. 1st
OpenSG Symposium, 2002.

[11] J. Rohlf and J. Helman. Iris performer: A high
performance multiprocessing toolkit for real-time 3d
graphics. In Computer Graphics (SigGraph’94 proc.),
pages 381–394, July 1994.

[12] W. Schroeder, K. Martin, and W. Lorensen. The
design and implementation of an object–oriented
toolkit for 3d graphics and visualization. In proc.
IEEE Visualization’96, pages 93–100, 1996.

[13] Coin. Systems In Motion, released 2000,
http://www.coin3d.org/lib/about coin3d/
vitited at 01.02.2006.

[14] P. Strauss and R. Carey. An object-oriented 3d
graphics toolkit. In proc. ACM SigGraph’92, pages
341–349, 1992.

[15] TGS c© Open Inventor, MeshViz
(formerly DataViz and 3DDataMaster).
http://www.tgs.com/support/datasheet/

MCS oiv MeshViz.pdf

visited at 01.02.2006.

[16] H. Tramberend. Avango: A distributed virtual reality
framework. In proc. IEEE Virtual Reality Conference
’99, pages 14–21, 1999.

[17] C. Upson, T. J. Faulhaber, D. Kamins, D. H. Laidlaw,
D. Schlegel, J. Vroom, R. Gurwitz, and A. van Dam.
The application visualization system: A
computational environment for scientific visualization.
In IEEE Computer Graphics and Applications,
volume 9 of 4, pages 30–42, July 1989.

259

Figure 11: Space shuttle dataset with textured and shaded surfaces (left). Corresponding scene graph and
data flow graph (right).

Figure 12: Space shuttle dataset rendered as point–cloud and a colormap mapped to pressure (left). Corre-
sponding scene graph and data flow graph (right).

Figure 13: Point cloud visualization on large back–projection screen (left). Scene rendered using illuminated
streamlines (right).

260

